Естествознание. Базовый уровень. 10 класс - Сергей Титов
Шрифт:
Интервал:
Закладка:
Рассмотренные изотопы гелия, кислорода и водорода называют стабильными, так как они устойчивы и не подвергаются самопроизвольному распаду. К настоящему времени в природе обнаружено 270 стабильных изотопов. Кроме них существуют и нестабильные изотопы, ядро которых неустойчиво и подвержено постоянному распаду. Эти изотопы чаще всего встречаются у тяжёлых элементов, т. е. элементов с большой атомной массой. Нестабильные изотопы часто получают искусственно при помощи ядерных реакций. Таким способом можно получить, например, нестабильный изотоп водорода, в ядре которого находятся два нейтрона. Этот изотоп водорода называется тритием из-за того, что его атомная масса равна трём (один протон плюс два нейтрона) (см. рис. 115, А).
Рис. 115. Состав атомных ядер: А – водорода; Б – углерода (красные шарики – протоны, голубые – нейтроны)
Большинство природных химических элементов существуют в виде нескольких устойчивых изотопов (рис. 115, Б). Например, железо имеет четыре стабильных изотопа, ртуть – семь, а олово – десять. Поэтому атомная масса элементов выражается дробным числом. Так, хлор, встречающийся в природе, на 76,5 % состоит из изотопа с атомной массой, равной 35, и на 24,5 % – из изотопа с массой 37. Поэтому средняя атомная масса хлора равна приблизительно 35,5.
Как следует из самого названия, нестабильные изотопы не могут существовать в течение неограниченного периода времени и постоянно распадаются. Скорость распада ядер этих изотопов измеряется их периодом полураспада – временем, за которое первоначальное количество частиц уменьшается вдвое. У большинства нестабильных изотопов этот период составляет не более нескольких секунд, хотя известны изотопы с периодом полураспада в миллионы лет. Во время распада ядра таких атомов испускают радиоактивное излучение. Таким образом, можно сказать, что все неустойчивые изотопы обладают радиоактивностью (рис. 116).
Химические свойства элементов, т. е. их способность вступать в химические реакции, не зависят от числа нейтронов в ядре атома, а связаны со строением его электронной оболочки. Поэтому в химическом отношении все изотопы одного элемента являются абсолютно одинаковыми. Эту особенность используют во многих областях науки, техники и медицины. Таким образом можно, например, судить о превращениях какого-либо химического вещества в организме и о местах его включения в клетки и ткани. Можно синтезировать биологически активное вещество, включив в него неустойчивый радиоактивный изотоп какого-либо атома, например углерода или азота. В химическом и биологическом отношении это вещество ничем не будет отличаться от такого же вещества, не содержащего радиоактивного изотопа. В какие бы другие соединения это вещество ни превращалось, как бы ни изменялось строение его молекулы, радиоактивное излучение нестабильного атома всегда будет сохраняться. Если затем ввести это вещество в кровь, то, измеряя испускаемое этим изотопом слабое, безопасное для организма, радиоактивное излучение в различных участках человеческого тела, можно судить о том, где и в каких количествах накапливается в организме это вещество или продукты его обмена. Постепенно эти продукты или само вещество будут выводиться из организма, и по уменьшению радиоактивности можно определить скорость их выведения. Такой метод получил название исследования с применением «меченых атомов».
Рис. 116. Радиоактивный металл кюрий светится в темноте, испуская большое количество ядер гелия
Сильное и слабое взаимодействие.При знакомстве со строением атомного ядра возникает естественный вопрос: с помощью каких сил нуклоны удерживаются друг около друга? Мы знаем, что протоны и электроны, будучи противоположно заряженными, взаимно притягиваются, и именно это электрическое поле определяет устойчивость атома в целом. Но поскольку все протоны заряжены одинаково положительно, они должны отталкиваться друг от друга и ядро должно немедленно разрушиться. Нейтральные нейтроны не могут вмешиваться в этот процесс, а сила гравитации настолько мала по сравнению с электромагнитной, что никак не может препятствовать этому распаду. Почему же ядро может существовать в неизменном виде миллиарды лет?
Оказывается, что в природе, помимо двух уже известных нам фундаментальных взаимодействий – гравитационного и электромагнитного, существуют ещё два типа взаимодействий, называемых сильным и слабым. Первое из них удерживает нуклоны внутри атомного ядра, а второе обнаруживается при превращениях элементарных частиц. Главной особенностью сильного взаимодействия, отличающей его от гравитационного и электромагнитного взаимодействий, является то, что оно действует только на очень малых расстояниях, соизмеримых с размером нуклонов. Эти расстояния составляют около 1015 м. На таких расстояниях эта сила становится столь огромной, что по сравнению с ней можно пренебречь всеми электромагнитными, не говоря уже о гравитационных, взаимодействиями между нуклонами. Слабое взаимодействие тоже распространяется только на очень малые расстояния, но превышает оно только силу гравитации.
Проверьте свои знания1. Что происходит с атомом, если он теряет один или несколько электронов?
2. Почему атомы невозможно увидеть с помощью светового микроскопа?
3. Какими частицами определяется масса атомного ядра, а какими – его заряд?
4. Что такое период полураспада атомного ядра?
5. Какие виды взаимодействия осуществляются внутри атомного ядра и элементарных частиц?
ЗаданияПодберите эпиграф к данному параграфу.
§ 46 Ядерный распад и элементарные частицы
Семь металлов создал светПо числу семи планет.Дал нам космос на доброМедь, железо, серебро,Злато, олово, свинец…Сын мой! Ртуть для них отец.И спеши, мой сын, узнать:Сера всем – родная мать.
Заклинание алхимиковСо времён александрийской науки, т. е. с первых веков нашей эры, в Египте, Византии, а затем на Арабском Востоке и в Европе сформировалось учение, получившее название алхимии. Алхимики, в отличие от чистых философов, не только предавались абстрактным рассуждениям о строении мира, но и проводили разнообразные эксперименты (рис. 117, 118). Главной целью алхимиков было превратить широко распространённые и дешёвые вещества в дорогие благородные металлы.
Рис. 117. Лаборатория алхимика
Рис. 118. Алхимические символы элементов
На протяжении веков алхимики утверждали, что достаточно приложить ещё немного усилий, и правильно подобранная смесь ртути, серы, олова, соли и других подобных веществ превратится в золото. Однако все эти многовековые попытки закончились неудачей, причина которой теперь нам известна.
Дело в том, что во времена Средневековья и раннего Возрождения не различали понятия «вещество» и «элемент». Теперь мы знаем, что в природе существуют виды атомов – химические элементы, простые вещества, состоящие из атомов одного элемента, и химические соединения, молекулы которых состоят из атомов разных элементов, соединённых химическими связями. Химические связи могут возникать и разрываться в процессе химических реакций, поэтому возможны превращения одних соединений в другие. Но для того чтобы осуществить превращение одного элемента в другой, необходимо вмешаться в строение его атомного ядра, а такое вмешательство невозможно при обычной химической реакции. Поэтому сколько бы мы ни нагревали смеси различных элементов, ни прибавляли к ним соли и кислоты, нового химического элемента, серебра или золота, из них не получится. Для того чтобы превратить один элемент в другой, требуется изменить строение его атомного ядра, т. е. осуществить ядерную реакцию (рис. 119).
Несмотря на то что сильное взаимодействие очень прочно скрепляет нуклоны, в некоторых случаях атомное ядро может быть разрушено. Для того чтобы вызвать распад ядра, требуется затратить огромную энергию. Когда происходит ядерный распад, ядро теряет протоны или электроны, или и то и другое. В результате этого один элемент может превращаться в другой. Во время распада происходит испускание альфа-, бета– или гамма-излучения, поэтому этот процесс всегда сопровождается радиоактивным излучением и называется также радиоактивным распадом. В зависимости от того, какие частицы испускает атом при распаде, различают альфа-распад, бета-распад и гамма– распад.